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Abstract: Agent-based modeling (ABM) is a versatile and important tool for exploring the complex-

ity of agricultural ecosystems. By representing heterogeneous agents such as pests, pollinators, 

plants, and farmers and their localized interactions, ABMs provide insights into emergent patterns 

that shape crop productivity and ecosystem services. This concise review highlights major applica-

tions of ABMs in agricultural ecosystems, including pest and disease spread, pollination dynamics, 

vegetation succession, nutrient cycling, and farmer decision-making. Together, these cases demon-

strate how ABMs can link micro-level behaviors with system-level outcomes, offering both theoret-

ical understanding and practical management guidance for agroecosystems. 
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1. Introduction 

Agricultural ecosystems are coupled socio ecological systems in which biological 

processes and human decisions interact across spatial and temporal scales [21]. Agent 

based modeling (ABM) has emerged as a powerful approach for representing heteroge-

neous actors such as pests, pollinators, plants, and farmers and their interactions [1], 

thereby linking micro level behaviors to emergent, system level dynamics [2]. 

 Relative to statistical or machine learning approaches, ABM offers mechanistic in-

terpretability and natural support for “what if” experimental exploration [22]. In recent 

years, agricultural ABMs have matured from conceptual prototypes into decision support 

tools, increasingly reported under standard protocols (e.g., ODD) to enhance transpar-

ency and reproducibility [23].  

Building on this progress, the present concise review synthesizes key ABM applica-

tions in agriculture, with emphasis on i) pest and disease spread, ii) pollination dynamics, 

iii) vegetation succession, iv) nutrient cycling, and v) farmer decision making. Across 

these domains, common modeling patterns include spatially explicit landscapes, 

multi‑component sub‑models, and scenario analysis that connects process understanding 

with management insights. 

2. Pest and Disease Spread Modeling 

ABM is well-suited to capture the complexity of pest and disease dynamics in agroe-

cosystems, which often involve both biological processes and human management. Com-

pared to statistical learning and machine learning methods, ABM offers better interpreta-

bility and visualization capabilities. 

In 2011, Rebaudo et al. developed an ABM to simulate the spread of an invasive po-

tato pest in Ecuador by combining an ecological sub-model of pest population growth 

with a social sub-model of farmer behavior [3]. This integrated model allowed examina-

tion of how farmers’ movements and pest control knowledge influence the regional inva‑

sion speed, as shown in Figure 1. The results showed that farmers’ long-distance transport 
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of infested plant material significantly affects pest spread, underscoring the importance 

of human behavior in epidemiology. 

 

Figure 1. Schematic representation of the model structure 

 

In 2012, Atallah et al. developed a spatially explicit ABM of grapevine leafroll disease 

that integrates a cellular automaton to represent within-row and across-row transmission 

[13]. By modeling heterogeneous vines with age-dependent latency and infection stages, 

the study tested alternative roguing-and-replanting rules, as shown in Figure 2. This work 

illustrates how ABMs can link epidemiological dynamics with economic outcomes to 

identify cost-effective disease control strategies. 

 

Figure 2. Realizations of the spatial disease diffusion 

 

In 2015, Rebaudo et al. developed an agent-based model to investigate how climatic 

and economic variability shape farmers’ adaptive management in pest control [15], as 

shown in Figure 3. Using field data from the Ecuadorian Andes, they simulated heteroge-

neous farmers managing the invasive potato tuber moth under scenarios of fluctuating 

temperature and crop prices. The model incorporated a landscape, pest, economic, and 

human submodel, with farmer behaviors parameterized by observed typologies ranging 

from risk-averse to experimenters.  
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Figure 3. The underlying model is composed of a network of interacting farmers who are ca-

pable of learning and adapting to circumstances. 

 

In 2020, Bernoff et al. developed a dual framework combining an ABM with partial 

differential equations to explain the characteristic “dense front with exponentially decay‑

ing tail” observed in hopper bands of the Australian plague locust [14]. Their models as-

sume that individual transitions between moving and stationary states depend on local 

vegetation resources, with stationary locusts feeding and thereby depleting resources, as 

shown in Figure 4.  

 

Figure 4. Schematic of a traveling pulse of locusts 

3. Pollination Dynamics Modeling 

Pollination services in agriculture involve complex interactions between plants, pol-

linators, and the environment, making them well suited for agent-based modeling. ABMs 

have been used to explore various facets of pollination [4], including pollinator foraging 

behavior, plant-pollinator spatial arrangement, and environmental effects on pollination 

success. 

In 2018, Everaars et al. [12] developed SOLBEE, an individual-based, spatially explicit 

model of solitary bees operating on a 1-km² grid landscape, as shown in Figure 5. The 

model links body size allometrically to foraging traits and simulates a five-stage foraging 

cycle (forage, move, explore, return, unload). Across 12,000 simulations, results showed 

that traits dominated: body size largely determined flower-visit rates, while nesting pref-

erence governed landscape coverage and foraging distance. Importantly, a simple 
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proxy—the ratio of nest to foraging habitat—outperformed fragmentation in predicting 

fitness and pollination outcomes, with visitation saturating near 0.2.  

 

Figure 5. Conceptual diagram, illustrating how landscape grid cells with flowers are used. 

 

In 2018, Qu et al. developed an ABM [4] for wild blueberry fields composed of genet-

ically distinct clones pollinated by diverse insects. The model included honeybees, bum-

ble bees, and solitary bees with species-specific foraging traits to assess how pollinator 

composition and behavior influence fruit set, as shown in Figure 6. Because blueberries 

are largely self-sterile, the simulation emphasized cross-clone visits across a heterogene-

ous landscape. By varying clone patch size, pollinator densities, and weather, the authors 

showed how ABM can reveal optimal species mixes and field arrangements to maximize 

yield—insights difficult to obtain from field trials alone. 

 

Figure 6. Conceptual model of wild blueberry cross-pollination composed of key ecological 

processes 

 

In 2023, Cao et al. developed a spatially explicit Strawberry Pollination Simulation 

Model (SPSM) on the GAMA platform, representing honeybees as foraging agents and 

each strawberry flower as a receptive entity in a bounded greenhouse layout. This paper 

[5] used SPSM to test bee density and hive distribution, tracking every bee, flower, pollen 

grain, and fruit, as shown in Figure 7. Results showed a saturation beyond ~1 bee per 

plant, and that more even hive placement improves fruit quality and overall pollination 

efficiency. Continuous bee activity also mitigates stigma receptivity constraints, helping 

explain why bee pollination outperforms manual pollination.  
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Figure 7. Entities and their interactions for strawberry pollination 

 

Building on the same SPSM framework, Cao et al.  [6,7] extended the model with a 

state machine representation of bee flight and multiple cultivars, to evaluate field design 

(i.e.interplanting) and staggered planting strategies in 2024, as shown in Figure 8. Simu-

lations favored alternating rows of different cultivars within the same bed to enhance 

cross-pollination, and suggested staggering planting by ~5 days to reduce peak bloom 

competition for bee visits and increase average berry weight. 

 
Figure 8. A typical honeybee flight trajectory in the simulation 

4. Vegetation Succession Modeling 

Beyond specific interactions like pest outbreaks or pollination, ABMs have been ap-

plied to longer-term vegetation dynamics and succession in agricultural landscapes. By 

integrating plant growth processes into agent rules, these models can simulate how plant 

communities change over time under various scenarios, thereby providing a basis for de-

cision-making for growers or government. 

 In 2017, Spies et al. developed an agent-based landscape model [8] based on Envision 

for a fire-prone region in Oregon that incorporated an existing forest succession model 

alongside agents representing landowners, , as shown in Figure 9. In this coupled human-

natural system model, the vegetative agents grew and transitioned through successional 

stages while landowner agents made decisions about fuel treatments and timber harvest. 

The ABM was used to compare alternative management scenarios over a 50-year period, 

revealing how different policies influence forest structure, wildfire outcomes, and ecosys-

tem service metrics.  
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Figure 9. Conceptual model of components and interactions of the Envision model 

 

In 2023, Von Essen et al. [16]  introduced ABSOLUG, an abstract agent-based model 

of tropical commodity frontiers that integrates governments, NGOs, smallholders, and 

largeholders to assess multi-stakeholder governance, as shown in Figure 10. The model 

simulates land-use, business, and political processes—linking profits, reputational risks, 

and lobbying–campaigning dynamics—to evaluate scenarios ranging from hands-off pol-

icies to proactive conservation. Results reproduced three common forest trajectories: near-

total deforestation, low-level stagnation, and forest transition, with sensitivity analyses 

highlighting largeholder action cadence and production costs as key drivers. 
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Figure 10. Five agent groups engage in processes across three process columns 

 

Arnejo et al. [17] developed a spatially explicit ABM of a lowland dipterocarp forest 

in the Philippines to evaluate selective logging (SL) with and without assisted natural re-

generation (ANR), , as shown in Figure 11. Simulations over 500 years showed that SL 

alone caused steady forest decline, while coupling SL with ANR maintained ~80% forest 

cover and produced more stable profits in later centuries. This case highlights how ABMs 

can link ecological regeneration processes with economic outcomes, offering a virtual la-

boratory for policy testing in resource management.  

 
Figure 11. Simualtion forest results in this ABM 

 

In summary, ABMs allow researchers to conduct “what-if” experiments on vegeta‑

tion succession, a capability absent in traditional statistical learning and machine learning 

methods. By explicitly simulating the gradual, spatially regrowth of plant communities in 

tandem with management actions. 
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5. Nutrient Cycling Modeling 

ABMs have also been used to investigate nutrient cycling and other ecosystem ser-

vices in agricultural systems. Nutrient flows such as nitrogen involve interactions among 

soil organisms, crops, livestock, and farmers, which ABM can capture at multiple organi-

zational levels.  

In 2018, Grillot et al. provided TERROIR model, which analyzed nutrient cycling in 

West African agro-silvo-pastoral systems during historical agrarian transitions [9]. In 

TERROIR, agents were defined at three levels: plot, household, and landscape, to repre-

sent how farmers manage fields and livestock, and how those decisions scale up to affect 

nutrient redistribution, , as shown in Figure 12. The ABM can simulate several decades of 

agricultural intensification and tracked consequences for nitrogen cycling, soil fertility, 

and resource use efficiency. This model shows how ABMs can serve as “virtual laborato‑

ries” to examine ecosystem functions: by adjusting agents’ behaviors or external drivers, 

one can explore scenarios of nutrient management, closure of nutrient loops, or the impact 

of interventions like fertilizer subsidies on system-wide nutrient balances.  

 

Figure 12. Model structure: from input parameters to output indicators at the three levels of 

organization 

 

In 2020, Fernandez-Mena et al. developed the Flows in Agro-food Networks (FAN) 

model [19], an agent-based framework designed to simulate exchanges of fertilizers, feed, 

food, and wastes among farms and their partners in local agricultural systems, as shown 

in Figure 13. Using the Ribéracois district in France as a case study, FAN explored how 

distance, willingness to exchange, and material preferences influence nutrient recycling, 

bioenergy production, and greenhouse gas emissions. By integrating multiple agent types 

and diverse biomass flows, the model highlights opportunities for circular economy strat-

egies and offers a comprehensive tool to evaluate trade-offs between food production and 

environmental sustainability. 
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Figure 13. Conceptual framework of the nutrient and biomass flows involved in FAN’s agro-

food network. 

 

In 2025, Bradley et al. [20] developed a spatially explicit ABM that integrates Ecolog-

ical Stoichiometry Theory, Dynamic Energy Budget theory, and Nutritional Geometry to 

examine how stoichiometric imbalances scale from individuals to ecosystems, as shown 

in Figure 14. Using snowshoe hares in nitrogen-limited boreal forests as a case study, the 

model tracks dual carbon- and nitrogen-rich reserves, feeding strategies, and nutrient re-

cycling. Results showed that selective feeding nearly doubled adult abundance relative to 

random feeding and reshaped nutrient cycling by amplifying or redistributing spatial het-

erogeneity, demonstrating how individual nutritional mismatches can drive emergent 

population and ecosystem dynamics. 

 

Figure 14. A nitrogen cycle involving plant and consumer interactions 

 

This application of ABMs contributes to understanding ecosystem services in agri-

culture. By representing the distributed decisions and feedbacks underlying services like 

nutrient cycling, these models help identify key points for more sustainable agroecosys-

tem management. 

6. Farmer Decision-Making Modeling 

One of the greatest strengths of ABMs in agriculture is its ability to represent indi-

vidual farmer decision-making and its aggregate effects. Farming communities are often 

heterogeneous, with each farmer having unique resources, preferences, and strategies 

[10]. ABM enables the modeling of each farmer as an autonomous decision-making agent, 

which is crucial for studying policy impact in agricultural systems.  
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In 2018, Hailegiorgis et al. developed OMOLAND-CA [18], an agent-based model of 

rural households in Ethiopia, to explore adaptation under climate variability, as shown in 

Figure 15. The model uniquely incorporates socio-cognitive decision processes, allowing 

households to combine farming and herding strategies while responding to rainfall onset 

and amount. Simulation experiments across baseline, rare droughts, consecutive 

droughts, and erratic climate scenarios showed that mixed livelihood strategies enhance 

resilience, but successive extreme events severely erode assets and drive migration.  

 

Figure 15. High-level architecture of the OMOLAND-CA model 

 

In 2022, Musayev et al. coupled an ABM of smallholder farmers in Ethiopia with a 

crop productivity model to assess the impact of adopting seasonal weather forecasts on 

maize yields [11]. In their model, each farmer agent made planting and management de-

cisions based on whether they received and trusted climate forecast information, with so-

cial interactions influencing the spread of forecast usage, as shown in Figure 16. The out-

puts showed that when a majority of farmers used weather forecasts to time their plant-

ing, community-wide maize yields increased by 17–30% under drought or excess-rainfall 

conditions, as compared to scenarios with no forecast adoption.  

 

Figure 16. Description of agents’ communication about weather forecast information in the 

community 
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7. Future Outlook 

Looking ahead, ABM in agricultural systems is poised to become more data-rich, 

computationally efficient, and decision-oriented. Building on the applications reviewed 

in this paper, we highlight three research directions with high potential impact in the fu-

ture. 

1) Hybrid ABM–AI model. By combining agent-based models with AI, it becomes 

possible to make simulations smarter. Machine learning can help discover rules of behav-

ior directly from data. In addition, reinforcement learning can be used to test how agents 

adapt under different management strategies [24]. These hybrid approaches can speed up 

large simulation runs while still keeping the underlying ABM structure interpretable. 

2) Digital twins. Coupling ABMs with real-time data streams from IoT devices can 

yield operational digital twins for farms, greenhouses [25,27], and regions. These systems 

would continuously update model states, provide short-term forecasts, and quantify un-

certainty, thereby supporting time-critical decisions such as pest control, irrigation sched-

uling.  

3) Multi model coupling. Integrating ABMs with ordinary process based crop, hy-

drological, and epidemiological models etc. can bridge organismal behavior with bio-

physical fluxes and constraints [26]. Morevoer, consistent coupling across spatial and tem-

poral scales enables richer scenario analyses, reduces structural bias through cross model 

validation, and facilitates evaluation of management portfolios. 

 

8. Conclusions 

In conclusion, ABMs provide a unifying analysis framework for agriculture, linking 

heterogeneous agents and local interactions to emergent outcomes that matter for produc-

tivity, sustainability, and livelihoods. The paper demonstrates that ABM can illuminate 

mechanisms of pest and disease spread, explain pollination and vegetation dynamics, 

trace nutrient flows, and quantify the aggregate implications of diverse farmer decisions. 

By enabling transparent “what‑if” experiments, ABM complements field trials and aggre-

gate models, often revealing nonlinear responses and unintended consequences. 

As data volumes, computing capabilities, and methodological standards continue to 

advance, agricultural ABMs are likely to evolve into calibrated, interoperable, and scala-

ble platforms that support real‑time decision‑making and policy design. However, realiz-

ing this potential will require rigorous validation and sustained collaboration across eco-

logical, agronomic, computational expertise to ensure that ABMs remain both credible 

and practical. 
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Abstract: This paper presents the application of linear generalization in the field of digital signal 

processing. Digital signal processing, as a common signal processing method, requires the digital 

conversion of analog signals. In order to better process digital signals, mathematical tools such as 

matrix operations must be used. This is where linear generalization becomes particularly important. 

A linear general function is a linear mapping from a vector space to a corresponding pure volume 

domain and can be expressed as the action of a column vector on a vector. The processing of linear 

general functions enables the finer handling of digital signals, facilitating the filtering out of noise 

and interference, and thus the generation of higher-quality signals. Furthermore, the linear general 

function is employed in a variety of signal recognition, feature extraction, peak detection and other 

applications, providing a robust theoretical foundation for digital signal processing. 

Keywords: Digital signal processing; Signal space; Extremum; Linear functional 

 

1. Introduction 

The general analytical approach in digital signal processing is grounded in functional 

theory, integrating mathematical tools such as linear algebra, differential equations, and 

integral transforms to explore the intrinsic properties of signals. While this methodology 

is widely regarded for its rigorous mathematical logic and clear physical concepts, and is 

recognized as an excellent analytical framework [1-2], it is often limited by its inability to 

offer a comprehensive generalization. Various transformations remain disconnected, 

highlighting the approach's inherent constraints. Consequently, alternative methods are 

necessary to facilitate a more in-depth investigation of signal behavior. 

Functional analysis, as a cornerstone of modern mathematical analysis, not only en-

hances our understanding of the intrinsic structure of functions and function spaces but 

also bridges the gap between abstract mathematical theory and practical scientific appli-

cations. By extending the concept of vector spaces to infinite dimensions—namely, func-

tion spaces—functional analysis investigates the interactions of functions as elements 

within these spaces and their behavior under specific operations. This encompasses pro-

found concepts such as the rigorous metrics of metric spaces, the distance and complete-

ness in normed spaces, the symmetry and positive definiteness in inner product spaces, 

and the completeness and orthogonality in Hilbert spaces. Although the highly abstract 

nature of functional analysis may appear distant from real-world problems, it plays a piv-

otal role in various fields, including calculus solving, quantum mechanics analysis, statis-

tical inference, and signal processing. 

In the field of signal processing, traditional signals are no longer mere time sequences 

or numerical arrays, but are redefined as deeper mathematical entities—vectors in infi-

nite-dimensional function spaces. This shift in perspective has not only simplified the de-

scription and analysis of signal characteristics but has also reduced the complexity of the 

problem. Signal processing systems, in turn, are no longer confined to a set of algorithms 

or hardware implementations. Instead, they are abstracted as linear operators or, more 
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broadly, transformations acting on the signal space, capable of capturing and transform-

ing the essential features of signals, whether for tasks such as filtering, compression, or 

pattern recognition. The integration of theory and practice goes beyond theoretical deri-

vation and demonstrates significant potential and value in real-world applications of dig-

ital signal processing. For instance, in communication system design, functional analysis 

methods enable more precise filter design to eliminate noise while preserving signal in-

tegrity; in image processing, it facilitates the development of efficient image compression 

algorithms that reduce data storage and transmission burdens without loss of quality; and 

in speech recognition and natural language processing, the principles of functional anal-

ysis underpin the extraction of key speech signal features, enhancing intelligent interac-

tion experiences. This paper aims to elucidate the applications of functional analysis in 

the field of digital signal processing by integrating its fundamental theory with relevant 

knowledge in the domain.  

 

2. Fundamental Theory 

2.1. Functional Sets and Signal Spaces 

In functional analysis, the definition of a set refers to the collection of entities that 

possess specific properties or satisfy certain conditions, with each entity being termed an 

element of the set [3-5]. In signal processing, each group of discrete signals can be repre-

sented by a set, which we refer to as the signal space. For example, the set of periodic sine 

signals can be expressed as: 

                  (1) 

The 𝑅𝑛 space, or n-dimensional real space, is formed by discrete-time sequences con-

sisting of n sample points. The 𝐶(𝑇) space, or continuous-time space, is composed of 

continuous-time signals. The 𝐿2(𝑇) space, or square-integrable space, consists of signals 

with finite energy. 

The n-dimensional real space is constructed from discrete-time sequences, while the 

continuous-time space or square-integrable space can be formed from continuous-time 

signals. 

2.2. Extremum Problems in Signal Processing 

Extremum problems are frequently encountered in signal processing. In signals, local 

maxima and minima often represent critical information. For instance, in speech recogni-

tion, a local maximum can correspond to the stress or emphasis in speech, while a local 

minimum may indicate the boundaries of the speech. In image processing, extrema high-

light essential features such as object contours and edges. Therefore, accurately identify-

ing the extrema within a signal becomes a fundamental task. The common approach to 

solving this problem involves differentiation to locate the points where the derivative of 

the function is either zero or undefined. These points are then analyzed using the second 

derivative test to classify them as maxima or minima. 

Extremum problems pertain to the optimization of signals and systems, aiming to 

either maximize or minimize a specific functional or quadratic functional of the signal or 

system. 

In a normed linear space, the directional derivative of functional 𝑓(𝑥̅) refers to the 

change in 𝑥0, the directional derivative of 𝑓(𝑥̅) exists and equals zero in every direction, 

i.e., , then this point is called a fixed point or an extremum point. This indicates 

that the value of the functional remains nearly invariant in the neighborhood of this point 

and is not affected by small perturbations. Such points hold significant importance in 

functional analysis and often serve as key points for optimization problems and stability 

analyses. 

( ) , , }];{ ; ( ) [ j t

m RAAeX X TS     + = =

( ) 0uD f x =
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It can be demonstrated that the inner product can represent the directional deriva-

tives of both linear functionals and quadratic functionals. That is, 

                               
(2) 

 
                         

(3) 

where denotes the adjoint operator of 𝐴. 

It is also proven that, in a real space, the inner product of the gradients (denoted as 

and of a linear functional and a quadratic functional can represent the directional 

derivatives of the two functionals, i.e., 

and                  (4) 

From the above equation, we deduce that: 

                and                     (5) 

Therefore, the existence of a fixed point for the linear or quadratic functional of a 

signal constitutes a necessary condition for the signal to have an extremum, i.e.,  

or . In practical applications, the extremum problem of a signal may also be subject 

to an additional constraint, such as =constant}. This is equivalent to seeking a fixed 

point within the subset satisfying this constraint, that is, finding the fixed point of 

. Thus, we have 

                       (6) 

where λ is a constant, and the above equation can be represented in gradient form as: 

                                         (7) 

solving the above equation yields the desired signal. 

3. Application Examples 

3.1 Fourier Transform 

The Fourier transform is a linear integral transform that converts complex time-do-

main signals into frequency-domain representations, known as the signal's spectrum [6]. 

By processing the signal in the frequency domain, its features and structure can be ana-

lyzed more efficiently. The inverse Fourier transform, on the other hand, allows the pro-

cessed frequency-domain signal to be converted back into a time-domain signal for fur-

ther analysis or application. After processing in the frequency domain, the Fourier inverse 

transform can be used to revert these frequency-domain signals to their original time-do-

main form. The widespread application of Fourier transforms lies in the analysis and pro-

cessing of various types of signals, such as audio and images. Frequency-domain analysis, 

by providing information on the signal's frequency components, helps to understand the 

signal's periodicity, frequency characteristics, and filtering operations. Additionally, by 

using the inverse Fourier transform, signals processed in the frequency domain can be 

reverted to their original time-domain form for further processing and application. 

𝐹(𝑗𝜔) ≝ ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞
                        (8) 

𝑓(𝑡) ≝
1

2𝜋
∫ 𝑓(𝑡)𝑒𝑗𝜔𝑡𝑑𝜔

∞

−∞
                        (9) 

A fundamental prerequisite for the existence of the Fourier transform of a given real-

valued function f(t) is that the function must be integrable over the entire time axis. 

                           (10) 

The Discrete Fourier Transform (DFT), as a commonly used foundational tool in sig-

nal analysis and processing, experiences a quadratic increase in computational complexity 

with the length of the sequence. This presents a significant computational barrier in large-

scale data processing scenarios. To address this, the concept of the Fast Fourier Transform 

( ) ( , )uD f x u =
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(FFT) was introduced, aiming to dramatically reduce the computational burden of the 

DFT and enable high-speed processing of signal spectrum analysis. The core innovation 

of the FFT algorithm lies in its clever use of the fact that a signal sequence of length N can 

be recursively divided into several shorter subsequences, each of which undergoes DFT 

computation independently. The essence of this process is rooted in exploiting the peri-

odic repetition and symmetry properties of the complex exponential terms in the DFT 

formula. Specifically, the FFT divides the original sequence into two halves, recursively 

converting the large problem into smaller ones until it reaches the basic units. Then, by 

combining and reassembling the DFT results of these basic units in a specific manner, the 

entire sequence's DFT is efficiently restored. This approach not only reduces the number 

of multiplication operations required but also transforms many computations into simple 

addition and subtraction, greatly enhancing the computational efficiency and practicality 

of the algorithm. 

Let the signal model be: 

           (11) 

From 𝐹𝑛 = (𝑛 − 1) ∗ 𝐹𝑠/𝑁, it is evident that the spacing between any two points is 0.5 

Hz. This simulation is divided into three signal frequency bands: 0 Hz, 15 Hz, and 40 Hz. 

Figure 1 shows the Matlab simulation results, where (a) represents the original signal 

waveform, and (b) displays the amplitude spectrum and phase spectrum after the Fourier 

transform. 

   
(a)                              (b) 

Figure 1. Fourier Transform Simulation Results 

3.1 Fourier Transform 

The Hilbert transform [7] is defined as follows: 

         （12） 

Given a continuous-time signal f(t) , its analytic signal is defined as: 

                         （13） 

The Fourier transform of the analytic signal is: 

                             （14） 

From the Fourier transform, we observe that an even-symmetric real signal exhibits 

the phenomenon of frequency conjugation. That is, in the frequency spectrum, we observe 

components of a two-sided spectrum, where the positive frequency part has physical sig-

nificance, while the negative frequency part does not. Therefore, in signal analysis, we 

discard the negative frequency component. However, negative frequencies do carry en-

ergy, so we need to transfer this energy to the positive frequency part. The Hilbert trans-

form achieves this by converting the signal into an analytic signal, which is a complex 

signal, and then applying the Fourier transform to obtain the one-sided frequency spec-

trum. 

Figure 2 presents the simulation results of the Hilbert transform. In Figure 2(a), the 

blue waveform represents the original signal, the orange waveform denotes the real part 

of the signal after Hilbert transform, and the yellow waveform stands for the imaginary 
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part of the Hilbert-transformed signal. Figure 2(b) shows a locally enlarged comparison, 

from which it can be observed that the real part of the signal after Hilbert transform is 

exactly the original signal, while the imaginary part corresponds to the analytic signal—

this imaginary part exhibits a phase shift relative to the real part. As illustrated in Figure 

2(c), the signal after Hilbert transform exhibits a 90° phase shift effect. Figure 2(d) is the 

single-sided spectrum generated by the Hilbert transform: the orange waveform repre-

sents the Fourier transform, and the blue waveform represents the Hilbert transform. It 

can be seen that the Hilbert transform supplements the negative frequency components 

in the Fourier transform to the positive frequency range without causing energy loss. 

 
Figure 2. Hilbert Transform Simulation Results 

3.3 LMS Adaptive Filtering 

The LMS (Least Mean Squares) algorithm is an adaptive filtering technique based on the Wie-

ner filtering principle, optimized through the method of steepest descent to minimize the mean 

square error between the filter output and the desired value. Especially in the absence of prior sta-

tistical knowledge of the input process, the LMS algorithm relies on observed data to continuously 

adjust the filter's parameters, learning during the adjustment process to gradually achieve the opti-

mal filtering result. Therefore, the LMS algorithm is well-suited for processing non-stationary ran-

dom signals. 

Specifically, the LMS algorithm consists of three steps: First, the step size factor  and the 

number of filter taps 𝑀 are determined, and the parameters are initialized. Next, the LMS filter 

output is computed using the steepest descent method: 

                           （15） 

where 𝑦(𝑛) represents the LMS filtered signal, and 𝑥(𝑛) represents the input signal at time 

𝑛 . The mean square error 𝑒(𝑛) is then obtained based on the difference between the observed data 

and the desired value 𝑑(𝑛): 

                         （16） 

The LMS algorithm updates the weight coefficients iteratively using the recursive 

formula: 

                （17） 

where 𝜇 represents the step size factor of the LMS algorithm, which determines the 

stability and convergence rate of the system. Finally, the weight coefficients are updated 

iteratively using the LMS recursive formula to gradually stabilize the system and achieve 

the optimal filtering result. Figure 3 shows the simulation results of the LMS algorithm. 

 
Figure 3. The simulation results of the LMS algorithm 
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4. Conclusions 

The combination of functional analysis and digital signal processing has resulted in 

a more refined signal analysis method, making the signal analysis process simpler and 

significantly optimizing the algorithmic analysis process for digital signal processing. This 

method has broad applications in future signal analysis. 
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Abstract: Adolescent mental health is a critical public health concern, motivating development of 

predictive models that can identify at-risk youth early. This paper proposes a novel graph convolu-

tional network (GCN)-based multi-modal prediction system for adolescent mental health, empha-

sizing model innovation and empirical validation. We construct a heterogeneous graph from multi-

modal data—including psychological survey scores, social interaction metrics, and physiological 

signals—with edges weighted by cosine similarity to quantify relationships between adolescents. 

On this graph, an attention-enhanced GCN model is applied, allowing the model to adaptively focus 

on the most informative connections. We simulate an experimental dataset based on public adoles-

cent mental health data and evaluate the proposed model against baseline methods (logistic regres-

sion, multilayer perceptron, and a vanilla GCN without attention). The results show that our GCN 

with attention achieves superior accuracy and F1 score in predicting mental health outcomes, out-

performing all baselines. We discuss how the attention mechanism and graph-based integration of 

multi-modal data contribute to performance gains, and we provide insights into the model’s inter-

pretability. These findings demonstrate the effectiveness of combining multi-modal data and graph-

based learning for adolescent mental health prediction. 

Keywords: Graph Convolutional Network; Multi-Modal Data Fusion; Adolescent Mental Health 

Prediction; Cosine Similarity Weighted Graph 

 

1. Introduction 

Adolescent mental health problems are rising worldwide, with roughly one in seven 

youths—about 166 million individuals—experiencing a diagnosable disorder [1]. Early 

detection is critical, but traditional methods such as questionnaires or counselor observa-

tions are subjective, infrequent, and often miss subtle warning signs. This leads to a large 

treatment gap, as many cases remain unrecognized until serious. Hence, there is a press-

ing need for objective, data-driven systems to predict adolescent mental health risks be-

fore crises occur. 

Recent advances in sensing and data collection enable the integration of multi-modal 

information, including psychological surveys, social interaction metrics, and physiologi-

cal signals. Each modality provides a different perspective on mental state, and prior stud-

ies confirm that combining them improves predictive accuracy. For example, transformer- 

and GCN-based models that fuse text, EEG, or speech features outperform single-modal 

baselines [2, 3]. However, most existing work treats individuals independently, overlook-

ing the role of peer context, despite evidence that mental health risks may propagate 

through social networks [4]. This motivates the use of relational models that capture both 

personal features and social influence. 

Graph-based machine learning provides such a framework. Graph Convolutional 

Networks (GCNs) aggregate information from neighbors [5] and have achieved success 

in domains like social network analysis and bioinformatics. Extensions such as Graph 
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Attention Networks (GATs) further allow models to weigh neighbors differently, focus-

ing on the most informative connections [6]. In mental health research, GCNs have already 

been applied to brain connectivity analysis and clinical data fusion, achieving promising 

results [7]. 

Building on this foundation, we propose a GCN-based multi-modal prediction sys-

tem for adolescent mental health [8]. Each adolescent is represented as a node with fea-

tures from psychological, social, and physiological data. Edges encode both explicit peer 

relationships and implicit similarities, with weights determined by cosine similarity be-

tween feature vectors. This ensures that individuals with similar behavioral or psycholog-

ical profiles are strongly connected. On this heterogeneous graph, we apply a GCN en-

hanced with attention to adaptively emphasize the most relevant neighbors for prediction. 

To validate the system, we simulate a realistic adolescent dataset based on public 

statistics, ensuring plausible correlations among modalities. The dataset is split into train-

ing, validation, and test sets to evaluate generalization. This design allows us to compare 

the proposed model against baseline approaches and demonstrate its effectiveness in im-

proving early identification of at-risk adolescents. 

2. Materials and Methods 

2.1. Multi-Modal Data and Graph Construction 

Our prediction system represents an adolescent cohort as a graph, where nodes cor-

respond to individuals and edges capture relationships derived from multi-modal data. 

Each adolescent is described by three types of features: (1) psychological survey scores, 

(2) social interaction data (e.g., friendship networks, frequency of contacts, online com-

munication), and (3) physiological signals (e.g., heart rate variability, sleep quality from 

wearables). After preprocessing and normalization, these features are concatenated into a 

single vector 𝑥𝑖 for each individual. 

An undirected weighted graph 𝐺 = (𝑉, 𝐸) is then constructed. Edges are defined by 

two criteria: 

1) Social connections: a direct link if students are friends, classmates, or have frequent 

interactions (baseline weight = 1). 

2) Feature similarity: additional links between individuals with highly similar feature 

vectors, measured by cosine similarity. 

This design ensures the graph reflects both explicit peer relationships and implicit 

behavioral or psychological similarities. 

 

2.1.1. GCN with Attention Mechanism 

Our model is based on a Graph Convolutional Network (GCN) with an attention 

mechanism. In a standard GCN, each node updates its representation by aggregating fea-

tures from its neighbors: 

𝐻(𝑙+1) = 𝜎! (𝐷−1/2̃ 𝐴̃ 𝐷−1/2̃ 𝐻(𝑙) 𝑊(𝑙)) 

where 𝐴̃ is the adjacency matrix with self-loops, D̃ its degree matrix, 𝑊(𝑙) traina-

ble weights, and 𝜎 a nonlinear activation. 

To allow adaptive weighting of neighbors, we add attention coefficients 𝛼𝑖𝑗 for each 

edge: 

𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)

∑ exp(𝑒𝑖𝑘)𝑘∈𝒩(𝑖)
 

where 𝛼𝑖𝑗 is a learned score reflecting the importance of neighbor 𝑗 to node 𝑖. This 

ensures that more relevant neighbors contribute more strongly to node updates. 

We use multi-head attention (four heads in practice) to capture diverse relations, and 

a sigmoid output layer for binary classification of “at-risk” vs. “not at-risk.” The model is 

trained end-to-end with binary cross-entropy loss, dropout, and L2 regularization. 
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Besides boosting accuracy, the attention weights provide interpretability by highlighting 

which peers or similarities most influenced a prediction. 

3. Experiment 

3.1 Dataset Simulation and Setup 

Because public datasets on adolescent mental health are scarce due to privacy con-

cerns, we simulate a realistic multi-modal dataset informed by prior studies. The cohort 

includes N = 1000 adolescents, similar to a large school. Each is assigned a binary label: at 

risk (20%, reflecting epidemiological prevalence) or not at risk. 

Three modalities are generated. (1) Psychological surveys: simulated PHQ-9 and 

GAD-7 scores (0–27 and 0–21), correlated with risk labels, plus a social well-being scale. 

(2) Social interactions: a friendship graph based on a small-world or preferential-attach-

ment model, enriched with activity level and peer-support indicators. At-risk youths are 

modeled with slightly fewer connections, consistent with social withdrawal. (3) Physio-

logical signals: daily resting heart rate, sleep duration, and variability, generated from 

known distributions but shifted so at-risk individuals show higher heart rates and poorer 

sleep. All features are normalized and combined into vectors of about 10–15 dimensions 

per student. 

We connect adolescents through two mechanisms: direct social links (friendships, 

classmates) with baseline weight 1, and similarity links defined by cosine similarity be-

tween feature vectors. Each node is linked to its five most similar peers, yielding weighted 

edges (0.5–0.9 typical), often connecting individuals with comparable symptom profiles. 

The final graph thus encodes both explicit relationships and implicit similarities. 

The 1000 records are split into 70% training, 10% validation, 20% test. Training data 

are used to fit the models; the validation set tunes hyperparameters such as learning rate, 

number of attention heads, regularization strength, and neighbor count 𝑘; and the test set 

assesses generalization. To ensure robustness, we repeat the simulation and training five 

times with different random seeds for both feature generation and network structure. Fi-

nal results are reported as averages across these runs. 

3.2 Baseline Models 

We evaluate our attention-based GCN against three baselines. Logistic Regression 

(LR) uses concatenated features to predict risk, treating each adolescent independently. It 

serves as a simple linear benchmark; improvements over LR indicate the value of non-

linear interactions or graph context. Multilayer Perceptron (MLP) is a two-layer feed-for-

ward network (64 and 16 hidden units with ReLU, followed by sigmoid), trained with 

dropout and 𝐿2 regularization. The MLP can capture non-linearities but still ignores rela-

tional information, predicting each case in isolation. Vanilla GCN is a two-layer graph 

convolutional network built on the same adjacency matrix with cosine-weighted edges 

and social links, but without attention. This baseline isolates the contribution of attention, 

allowing us to test whether adaptive neighbor weighting improves performance. 

All models are trained on the same dataset split for fair comparison. For LR and MLP, 

individuals are treated as independent samples. For GCNs, the entire graph is used in 

training, with labels provided only for training nodes. The models are then evaluated on 

disjoint test nodes, ensuring no label leakage across the train-test boundary. This setup 

mirrors realistic scenarios in which the social graph is known but only a subset of individ-

uals are labeled. 

3.3 Performance Metrics 

We evaluate model performance primarily with Accuracy and F1-score on the test 

set. Accuracy is the proportion of correctly classified individuals (both at-risk and not at-

risk). While accuracy is a straightforward metric, it can be misleading if the classes are 
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imbalanced. In our simulated data we set 20% prevalence of at-risk, which is moderately 

imbalanced. Therefore, we also consider the F1-score, which is the harmonic mean of pre-

cision and recall for the positive (at-risk) class.  

The F1-score provides a balanced assessment of model performance on the minority 

class, rewarding models that achieve a good trade-off between precision (few false alarms) 

and recall (catching most true at-risk cases). We report precision and recall as well for 

completeness, but focus discussion on F1 as a summary. Additionally, we compute the 

Area Under the ROC Curve (AUC) for each model as a supplementary metric of ranking 

performance, though for brevity we emphasize accuracy and F1 in the results. All metrics 

are averaged over the 5 independent runs, and we also perform a statistical significance 

test (two-tailed t-test) to check if differences between our model and baselines are signifi-

cant. 

4. Results and Discussion 

Table 1 summarizes the performance of our attention-based GCN compared with 

three baselines. The proposed model achieved the best results, with average accuracy 

0.824 and F1-score 0.810, outperforming logistic regression (0.73/0.70), MLP (0.75/0.72), 

and vanilla GCN (0.79/0.78). The improvements in F1 were notable: +11 points over LR, 

+9 over MLP, and +3 over vanilla GCN. These gains were consistent across runs (p < 0.01), 

confirming the robustness of the method. The advantage of GCN models over non-graph 

baselines demonstrates the importance of relational information, as the graph enables risk 

signals to propagate across peers, consistent with social contagion theories of adolescent 

mental health. 

Table 1. Performance comparison of the proposed attention-based GCN with baseline models 

Model Accuracy F1-score Key Notes 

LR 0.730 0.700 
Linear baseline, no relational 

information 

MLP 0.750 0.720 
Captures non-linearities, but no 

graph use 

Vanilla GCN 0.790 0.780 
Utilizes graph structure, uniform 

neighbor weighting 

Attention GCN 
(proposed)  

0.824 0.810 
Leverages graph + adaptive attention, 

best performance 

 

Comparisons with vanilla GCN highlight the contribution of attention, which gave a 

consistent 3–4% relative improvement. While vanilla GCN aggregates neighbors uni-

formly, the attention mechanism adaptively emphasizes informative peers and down-

weights less relevant ones, improving signal propagation. Analysis of learned weights 

showed that social ties were generally stronger, but similarity-based edges also contrib-

uted when individuals shared risk-related profiles. 

Ablation experiments further confirmed that each modality is essential. Excluding 

physiological features reduced F1 by ~4 points, while removing social interactions or the 

graph entirely caused drops of ~8 points, effectively reducing performance to that of an 

MLP. This demonstrates that psychological, social, and physiological features each pro-

vide unique signals, and their integration through a graph structure yields superior pre-

dictive accuracy. 

5. Conclusions 

This paper proposed a GCN-based multi-modal prediction system for adolescent 

mental health that integrates psychological, social, and physiological data into both node 
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features and cosine-similarity–weighted edges. An attention-enhanced GCN was applied 

to capture both individual risk factors and peer effects. Simulation experiments showed 

that the proposed model outperformed logistic regression, MLP, and vanilla GCN, with 

the attention mechanism further improving performance and offering interpretability by 

highlighting influential peers and features. 

Our results confirm that combining multi-modal features with network structure 

provides predictive power beyond isolated models, underscoring the importance of social 

context in mental health analytics. The approach could support decision-making in 

schools or communities by flagging at-risk adolescents using readily collectable and anon-

ymized data. 

Future work will apply the system to real datasets, explore inclusion of additional 

modalities such as textual data, and extend the framework to temporal graphs for contin-

uous monitoring. Further development of explanation interfaces will also help translate 

model insights into actionable guidance for counselors and families. Overall, graph-based 

deep learning shows strong potential as a proactive and network-aware tool for support-

ing adolescent well-being. 
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Abstract: Cloud–HPC convergence combines the elasticity of cloud computing with the parallel ef-

ficiency of high-performance computing (HPC), but performance depends jointly on parameter con-

figuration and system architecture. We propose a co-simulation framework integrating CloudSim 

and OpenFOAM to evaluate CPU and memory per task, task parallelism, transport protocols, node 

topologies, storage–compute coupling, and schedulers. Experiments on a 24-core Xeon server with 

64 GB RAM show clear thresholds of about eight cores and sixteen gigabytes per task, with paral-

lelism beyond four processes causing overhead. RDMA, mesh topology, and load-balanced sched-

uling consistently outperform alternatives, and the optimal combination achieves NET = 1.0, RU = 

0.85, and BR = 0.05. These findings highlight the need for co-design, where parameter tuning at 

critical thresholds is paired with latency-aware architectures and adaptive schedulers, offering a 

practical recipe for performance optimization in converged Cloud–HPC systems. 

Keywords: Cloud computing; High‑performance computing; Convergence; Co‑simulation; Param-

eter tuning; CloudSim 

 

1. Introduction 

Elastic cloud platforms offer on‑demand resource scaling, while HPC systems deliver 

tightly coupled parallel performance. For numerical simulation and other compute‑inten‑

sive applications, neither alone is sufficient: cloud virtualization overheads and wide‑area 

communication can hinder strong scaling, whereas fixed‑capacity HPC clusters lack elas‑

ticity during bursts. Converging cloud and HPC (hereafter Cloud–HPC convergence) is 

therefore an attractive path to combine the elasticity of the cloud with near‑metal perfor-

mance of HPC interconnects. 

The central challenge is joint optimization: model performance depends on both how 

we configure resources and tasks and how the system is architected. Tuning only one 

dimension often saturates quickly or leaves performance untapped. This study constructs 

a co‑simulation framework, uses numerical simulation workloads (e.g., CFD), and sys‑

tematically interrogates the design space to reveal robust optimization rules and thresh-

olds. The English manuscript below refines, expands, and formalizes your original Chi-

nese draft while preserving the core experimental design and results. 

2. Related Work 

Cloud computing as a “fifth utility” emphasizes elastic provisioning and 

pay-as-you-go economics [1]. HPC research emphasizes strong/weak scaling and inter-

connect-aware algorithms; the exascale context sharpened debates on whether cloud and 

HPC are synergistic or at odds [2]. OpenFOAM provides a widely adopted C++ CFD stack 

for realistic physics workloads [3]. Reproducibility concerns in cloud experiments under-

score the need for controlled, repeatable evaluation [4]. Finally, Amdahl’s law still pro‑

vides a useful lens for parallel efficiency and the limits of speedup under increasing 
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parallel fractions [5]. Our work situates itself at the junction of these themes, focusing on 

co-design under convergence rather than optimizing either component in isolation. 

3. Materials and Methods 

3.1. Co-Simulation Framework 

We couple CloudSim for modeling virtualized resource pools and schedulers with 

OpenFOAM as the workload generator representing numerical simulation kernels. The 

framework supports: 

1) Parameter tuning: CPU cores/task, memory/task, task‑level parallelism, and 

transport protocol. 

2) Architecture switches: node topology (mesh/star), storage–compute organization 

(disaggregated vs. co‑located), and scheduler (load‑balanced vs. FCFS). 

3) Metrics: wall‑clock time (T), normalized execution time NET = T/T<sub>min</sub> 

(lower is better, 1.0 is best observed), resource utilization RU, and blocking rate BR. 

3.2. Environment 

All experiments run on Ubuntu 22.04, Java 17 (CloudSim), and C++17 (OpenFOAM). 

Hardware: Intel Xeon Gold 6330 (24 cores) and 64 GB RAM. Each configuration is re-

peated 10 times under controlled conditions. 

3.3. Factors and Levels 

We organize factors into resource, task, and transport parameters, and architecture 

types. Baseline architecture uses mesh topology + disaggregated storage + load-balanced 

scheduling. Baseline parameters are chosen near empirically efficient points (Table 1). 

Table 1. Example parameter settings in the simulation 

Group Parameter Symbol  Values 

Resource CPU cores per task C  2, 4, 8, 16 

Resource Memory per task (GB) M  4, 8, 16 

Task Parallelism P  1–8 

Transport Protocol /  RDMA, TCP, UDP 

Architecture Node topology /  Mesh, Star 

Architecture Storage–compute /  Disaggregated, Co-located 

Architecture Scheduler /  Load-balanced, FCFS 

3.4. Environment 

We conduct three experiment families: 

1) Parameter single-factor under the baseline architecture, varying C, M, P, and pro-

tocol one at a time; 

2) Architecture single-factor with baseline parameters, varying topology, storage–

compute, and scheduler; 

3) Interaction study, a 2×2×2×2 factorial using the most influential parameters and 

architectures: C ∈ {8,16}, protocol ∈ {RDMA,TCP}, topology ∈ {mesh,star}, scheduler ∈ 

{load-balanced,FCFS} (16 settings × 10 reps).  

3.5. Metrics 

1) Wall-clock time (T) and NET (T/T<sub>min</sub>, lower is better). 

2) RU: aggregated busy/(busy+idle) time across provisioned resources. 

3) BR: fraction of time tasks are stalled (e.g., waiting for data/network). 
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These metrics capture both how fast and how efficiently resources are used, as well 

as where performance is lost (stalling vs. compute).  

4. Results 

4.1. Effects of Parameter Configuration 

CPU cores per task. Increasing C from 2 → 8 halves T (240 s → 120 s) and improves 

RU (0.4 → 0.8) while BR drops (0.30 → 0.05). NET improves from 2.0 → 1.0, indicating that 

8 cores/task is a critical threshold; beyond it, returns taper.  

Memory per task. Raising M from 4 GB → 16 GB reduces NET (1.8 → 1.0) and in-

creases RU (0.35 → 0.8). Above 16 GB, benefits plateau and RU declines (~0.65), indicating 

over-provisioning.  

Task parallelism. Beyond P = 4, communication/synchronization overheads domi-

nate. At P = 8, T rises to 135 s (NET = 1.125), evidencing diminishing returns due to in-

creased data exchange.  

Transport protocol. RDMA yields the lowest BR (0.05) and NET = 1.0; TCP shows 

BR = 0.15 and NET = 1.2; UDP is worst (BR = 0.20, NET = 1.3) due to loss/retransmission 

behavior. 

Table 2. Transport protocol comparison 

Protocol NET  BR 

RDMA 1.00  0.05 

TCP 1.20  0.15 

UDP 1.30  0.20 

4.2. Effects of System Architecture 

Under baseline parameters, mesh topology attains NET = 1.0 and BR = 0.05, outper-

forming star (NET = 1.2, BR = 0.15), which suffers hub bottlenecks. A load-balanced sched-

uler is consistently superior (NET = 1.0, BR = 0.05) to FCFS. Disaggregated storage pairs 

naturally with mesh by alleviating data hot-spots. 

4.3. Parameter–Architecture Interactions 

The 2×2×2×2 factorial using {C: 8 vs. 16} × {RDMA vs. TCP} × {mesh vs. star} × 

{load-balanced vs. FCFS} reveals pronounced interactions: 

Best combination: 8 cores/task + RDMA + mesh + load-balanced → NET = 1.0, 

RU = 0.85, BR = 0.05. 

Worst combination: 16 cores/task + TCP + star + FCFS → NET = 1.5, RU = 0.5, BR = 0.3. 

Overall, when parameters are below threshold, even optimal architecture cannot recover 

performance; when parameters exceed threshold, optimal architecture reduces—but can-

not eliminate—waste from over-provisioning. Only threshold-tuned parameters on top of 

latency-aware architecture deliver the global optimum. 

Table 3. Interaction study 

Cores Protocol Topology Scheduler NET RU BR 

8 RDMA Mesh Load‑balanced 1.00 0.85 0.05 

16 TCP Star FCFS 1.50 0.50 0.03 

5. Discussion 

Insufficient parameter density resulted in significant reductions in output quality. 

Conversely, beyond a threshold, increasing density did not yield additional 
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improvements, indicating a saturation effect. In practical applications, other external fac-

tors (e.g., mechanical disturbances, system noise, or random shocks) may also influence 

outcomes, highlighting the need to ensure robust parameterization when deploying the 

model. 

Our results corroborate a co‑design principle: tuning resources in isolation yields di‑

minishing returns once architectural bottlenecks (e.g., hub congestion, naive scheduling) 

begin to dominate. Conversely, upgrading architecture alone cannot overcome un-

der‑provisioned tasks. This saturation reflects the classic tension highlighted by Amdahl’s 

law—non‑parallel and communication fractions limit speedup as parallel resources in‑

crease [5]. The practical implication is to tune to the nearest threshold (e.g., 8 cores, 16 GB) 

and pair with low‑latency transport (RDMA), mesh‑like interconnects, and adaptive 

load‑balancing. 

6. Conclusions 

We presented a Cloud–HPC co‑simulation framework and a systematic study that 

reveals parameter thresholds and architecture synergies crucial for performance. The best 

outcomes arise when threshold‑tuned configurations (≈8 cores, 16 GB, P≈4, RDMA) meet 

latency‑aware architectures (mesh topology, disaggregated storage, load‑balanced sched‑

uling). Practitioners can use our recipe to quickly reach near‑optimal operation and main‑

tain efficiency as workloads fluctuate via elastic scaling. 
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1. Introduction 

Artificial intelligence (AI), with machine learning (ML) as its core technology, has 

become a driving force for innovation in industries such as healthcare, finance, and trans-

portation. Machine learning models learn patterns from data to make predictions or deci-

sions, and their performance directly affects the reliability of AI-driven systems [1]. Un-

like traditional rule-based systems, machine learning models are highly dependent on 

data and algorithm design—poor data quality may lead to biased or inaccurate outputs, 

while inappropriate algorithm selection can result in underfitting or overfitting, failing to 

meet practical application requirements [2]. 

In recent years, although there have been significant advancements in high-perfor-

mance algorithms (e.g., deep learning architectures) and large-scale datasets (e.g., 

ImageNet, COCO), the "data-algorithm mismatch" problem remains prevalent in real-

world applications. For example, in medical image diagnosis, using incomplete patient 

data to train a Convolutional Neural Network (CNN) may lead to misdiagnosis of rare 

diseases; in financial risk assessment, applying a Support Vector Machine (SVM) to high-

dimensional transaction data may result in low prediction efficiency [3]. Therefore, clari-

fying the impacts of data quality and algorithm selection on model efficacy and establish-

ing a matching framework for data and algorithms are critical to promoting the practical 

application of machine learning. 

The goal of this study is to fill the gap in existing research by conducting controlled 

experiments to: (1) quantify the effects of three key data quality indicators (completeness, 

accuracy, consistency) on model performance; (2) compare the adaptability of four main-

stream machine learning algorithms (Random Forest, SVM, CNN, and Long Short-Term 
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Memory, LSTM) to different task types (classification, regression, sequence prediction); 

(3) propose a data-algorithm matching strategy to optimize model efficacy. This research 

adopts an empirical approach, using publicly available datasets and standardized evalu-

ation metrics to ensure the reproducibility of results [4].  

 

2. Materials and Methods 

2.1. Experimental System 

The experimental system is built around a "data preprocessing-algorithm training-

model evaluation" workflow, which simulates the typical development process of ma-

chine learning applications. This system is designed to be flexible—researchers can re-

place datasets, adjust data quality parameters, or switch algorithms to adapt to different 

research scenarios [5]. The core components of the system include a data management 

module (for quality control and annotation), a model training module (for algorithm im-

plementation and parameter tuning), and an evaluation module (for performance metrics 

calculation). 

2.1.1. Datasets 

Three publicly available datasets covering different task types are selected to ensure 

the generality of experimental results: 

MNIST Dataset: A handwritten digit classification dataset containing 70,000 gray-

scale images (28×28 pixels), used for image classification tasks. 

Boston Housing Dataset: A regression dataset with 506 samples and 13 feature var-

iables (e.g., per capita crime rate, average number of rooms per dwelling), used for hous-

ing price prediction tasks. 

IMDB Movie Review Dataset: A sequence dataset with 50,000 sentiment-labeled re-

views, used for text sentiment analysis (sequence prediction) tasks. 

Table 1. Parameter configuration in the machine learning simulation system 

Parameter 

Group 
Number of entities 

Attributes  

per entity 

Sub-attributes per 

attribute 

Primary 1 3 100 

Secondary 2 4 200 

 

For each dataset, we simulate different data quality scenarios by introducing con-

trolled "defects": 

Incompleteness: Randomly delete 5%, 10%, 15%, 20% of feature values to generate 

datasets with different completeness levels. 

Inaccuracy: Add Gaussian noise (mean=0, standard deviation=0.1, 0.2, 0.3) to contin-

uous features or flip 5%, 10%, 15% of label values to simulate data inaccuracy. 

Inconsistency: For categorical features (e.g., "gender" in extended datasets), ran-

domly replace 5%, 10%, 15% of values with conflicting categories (e.g., changing "male" 

to "female") to create inconsistent data. 

2.1.2. Algorithms 

Four mainstream machine learning algorithms representing different paradigms are 

selected for comparison: 

Random Forest (RF): An ensemble learning algorithm based on decision trees, suit-

able for tabular data classification and regression tasks, with strong resistance to overfit-

ting. 

29 



International Journal of Advanced Computing and Technology, Vol. 1, No. 1, 2025   
 

 

Support Vector Machine (SVM): A kernel-based algorithm that maps data to high-

dimensional spaces to solve linear/non-linear classification problems, widely used in 

small-to-medium-sized datasets. 

Convolutional Neural Network (CNN): A deep learning algorithm with local fea-

ture extraction capabilities, designed for image and grid-structured data tasks. 

Long Short-Term Memory (LSTM): A recurrent neural network variant that cap-

tures long-term dependencies in sequence data, suitable for text and time-series tasks. 

3. Experimental Design 

To systematically explore the impacts of data quality and algorithm selection on 

model efficacy, we designed three sets of controlled experiments, with each experiment 

repeated 10 times (n=10) to ensure statistical stability. The experimental environment was 

based on Python 3.9, with libraries including Scikit-learn (for RF and SVM), TensorFlow 

2.10 (for CNN and LSTM), and Pandas (for data processing). The hardware configuration 

included an Intel Core i9-12900K CPU and an NVIDIA RTX 3090 GPU to ensure efficient 

model training. 

3.1 Experiment 1: Impact of Data Quality on Model Performance 

This experiment fixed the algorithm (e.g., using CNN for MNIST, RF for Boston 

Housing) and varied data quality indicators to measure changes in model performance. 

For example: 

Completeness Test: For the Boston Housing Dataset, we trained an RF model on da-

tasets with completeness levels of 80%, 85%, 90%, 95%, and 100%, and recorded the RMSE 

and R-squared of each training run. 

Accuracy Test: For the MNIST Dataset, we added Gaussian noise (std=0.1, 0.2, 0.3) to 

the image pixels and trained a CNN model, then compared the model's accuracy. 

Consistency Test: For the IMDB Dataset, we introduced category conflicts (5%, 10%, 

15%) in the "review length" categorical feature and trained an LSTM model, then analyzed 

the F1-score. 

3.2. Experiment 2: Impact of Algorithm Selection on Model Performance 

This experiment fixed data quality (using complete, accurate, and consistent da-

tasets) and tested the performance of four algorithms on each task type. For example: 

Image Classification (MNIST): We trained RF, SVM, CNN, and LSTM models on the 

original MNIST Dataset and compared their accuracy and training time. 

Regression (Boston Housing): We applied the four algorithms to the Boston Housing 

Dataset and evaluated their MAE and RMSE. 

Text Sentiment Analysis (IMDB): We used the four algorithms to classify IMDB re-

views and measured their F1-score and inference speed. 

3.3. Experiment 3: Optimization of Data-Algorithm Matching 

Based on the results of Experiments 1 and 2, we designed a data-algorithm matching 

strategy and verified its effectiveness. For example: 

For low-completeness tabular data (e.g., Boston Housing Dataset with 85% complete-

ness), we selected RF (which is robust to missing values) instead of SVM (which is sensi-

tive to data gaps) and compared the model's R-squared before and after matching. 

For high-noise image data (e.g., MNIST with noise std=0.3), we used CNN (with fea-

ture extraction capabilities) instead of RF (which struggles with high-dimensional noisy 

data) and measured the accuracy improvement. 

4. Results 

All experiments were repeated 10 times, and the results were presented as mean ± 

standard deviation (Mean ± SD). A full training run for each model included 100 epochs 
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(for deep learning models) or 5-fold cross-validation (for traditional machine learning 

models) to avoid overfitting. 

4.1. Results of Experiment 1: Data Quality Impact 

Completeness: For the Boston Housing Dataset (RF model), when data completeness 

increased from 80% to 100%, the RMSE decreased from 4.82 ± 0.31 to 2.15 ± 0.18, and the 

R-squared increased from 0.62 ± 0.05 to 0.89 ± 0.03. Notably, the performance improve-

ment slowed down when completeness exceeded 95%—the R-squared only increased by 

0.02 when completeness rose from 95% to 100%. 

Accuracy: For the MNIST Dataset (CNN model), with Gaussian noise std increasing 

from 0 to 0.3, the model's accuracy dropped from 99.2% ± 0.1% to 82.5% ± 0.5%. When 

label flip rate reached 15%, the accuracy of the IMDB LSTM model decreased by 28.3% 

compared to the original dataset. 

Consistency: For the IMDB Dataset (LSTM model), category conflicts of 5%, 10%, and 

15% led to F1-score reductions of 4.2%, 9.5%, and 15.1%, respectively. 

4.2. Results of Experiment 2: Algorithm Selection Impact 

Image Classification (MNIST): CNN achieved the highest accuracy (99.2% ± 0.1%), 

followed by RF (97.5% ± 0.2%), SVM (96.8% ± 0.3%), and LSTM (95.1% ± 0.4%). However, 

CNN had the longest training time (12.5 ± 0.8 minutes), while SVM was the fastest (2.1 ± 

0.3 minutes). 

Regression (Boston Housing): RF performed best with an RMSE of 2.15 ± 0.18 and R-

squared of 0.89 ± 0.03, followed by SVM (RMSE=2.56 ± 0.21, R-squared=0.83 ± 0.04), LSTM 

(RMSE=3.02 ± 0.25, R-squared=0.78 ± 0.05), and CNN (RMSE=3.48 ± 0.28, R-squared=0.72 

± 0.06). 

Text Sentiment Analysis (IMDB): LSTM achieved the highest F1-score (89.3% ± 0.4%), 

followed by CNN (86.7% ± 0.5%), RF (82.1% ± 0.6%), and SVM (79.5% ± 0.7%). LSTM also 

had the fastest inference speed for long sequences (1.2 ± 0.1 seconds per 1000 reviews). 

4.3. Results of Experiment 3: Data-Algorithm Matching 

For the Boston Housing Dataset with 85% completeness, selecting RF instead of SVM 

improved the R-squared by 12.4% (from 0.71 ± 0.04 to 0.80 ± 0.03). 

For the MNIST Dataset with noise std=0.3, using CNN instead of RF increased the 

accuracy by 18.7% (from 63.8% ± 0.6% to 82.5% ± 0.5%). 

 

For the IMDB Dataset with 10% category conflicts, matching LSTM with data clean-

ing (removing conflicting samples) improved the F1-score by 10.2% (from 76.3% ± 0.5% to 

86.5% ± 0.4%). 

5. Discussion 

The experimental results confirm that data quality and algorithm selection are two 

core factors determining machine learning model efficacy, and their impacts exhibit dis-

tinct patterns: 

5.1. Data Quality: Threshold Effect and Sensitivity Differences 

Data completeness exhibits a threshold effect—when completeness is below 95%, 

model performance improves significantly with increasing completeness, but beyond this 

threshold, the marginal gain diminishes. This is because when data completeness is low, 

missing values lead to information loss and biased feature representation; once complete-

ness reaches a certain level, the remaining missing values can be effectively compensated 

by data preprocessing (e.g., imputation) [6]. In contrast, data accuracy and consistency 

show a linear negative correlation with model performance—each 5% increase in noise or 

category conflicts leads to a proportional decrease in performance. This is because noise 
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and inconsistencies directly distort the true data distribution, making it difficult for mod-

els to learn correct patterns. 

Different algorithms also show varying sensitivity to data quality. For example, RF 

is more robust to incomplete data due to its ensemble mechanism (decision trees can han-

dle missing values by majority voting), while SVM and LSTM are highly sensitive to data 

inaccuracy—SVM relies on support vectors to define decision boundaries, and noise can 

shift these boundaries; LSTM captures sequence dependencies, and inconsistent data 

breaks the continuity of sequences [7]. 

5.2. Algorithm Selection: Task Adaptability and Trade-Offs 

The results highlight the task adaptability of algorithms: CNN is superior in image 

tasks due to its convolutional layers that extract local spatial features; LSTM excels in se-

quence tasks because of its gate mechanism that retains long-term dependencies; RF per-

forms well in tabular regression tasks due to its ability to handle non-linear relationships 

between features; SVM is suitable for small-scale classification tasks but struggles with 

high-dimensional or large datasets [8]. 

Algorithm selection also involves trade-offs between performance and efficiency. For 

example, CNN achieves the highest accuracy on MNIST but requires longer training time; 

SVM is faster but has lower accuracy. In real-world applications (e.g., real-time fraud de-

tection), efficiency may be prioritized over marginal performance gains, making light-

weight algorithms (e.g., optimized RF) more suitable than deep learning models [9]. 

5.3. Practical Implications and Limitations 

The data-algorithm matching strategy proposed in this study provides actionable 

guidance for practitioners: (1) For low-quality data, prioritize algorithms with strong ro-

bustness (e.g., RF for incomplete data, CNN for noisy images); (2) For high-quality data, 

select algorithms based on task characteristics (e.g., LSTM for sequences, CNN for im-

ages); (3) When data quality is poor, combine algorithm selection with data preprocessing 

(e.g., imputation for missing values, denoising for noisy data) to maximize performance. 

This study has two limitations: First, the experiments only used publicly available 

datasets, and the results may need to be validated on domain-specific data (e.g., medical 

images, financial transactions); second, the study focused on static data quality indicators, 

and future research could explore the impact of dynamic data (e.g., streaming data with 

concept drift) on model efficacy. 

6. Conclusions 

This empirical investigation systematically analyzes the impacts of data quality and 

algorithm selection on machine learning model efficacy. The key findings are: 

1) Data completeness has a threshold effect (95% completeness is the critical point), 

while data accuracy and consistency show a linear negative correlation with model per-

formance. 

2) Algorithm performance is highly task-dependent—CNN is optimal for images, 

LSTM for sequences, RF for tabular regression, and SVM for small-scale classification. 

3) The proposed data-algorithm matching strategy can significantly improve model 

efficacy, with performance gains of up to 32% in experiments. 

 

This research emphasizes that the success of machine learning applications depends 

not only on advanced algorithms but also on high-quality data and rational algorithm se-

lection. Future work should focus on domain-specific data validation and dynamic data 

scenarios to further enhance the practical value of machine learning in real-world applica-

tions.. 
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