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Abstract: This paper presents the application of linear generalization in the field of digital signal 

processing. Digital signal processing, as a common signal processing method, requires the digital 

conversion of analog signals. In order to better process digital signals, mathematical tools such as 

matrix operations must be used. This is where linear generalization becomes particularly important. 

A linear general function is a linear mapping from a vector space to a corresponding pure volume 

domain and can be expressed as the action of a column vector on a vector. The processing of linear 

general functions enables the finer handling of digital signals, facilitating the filtering out of noise 

and interference, and thus the generation of higher-quality signals. Furthermore, the linear general 

function is employed in a variety of signal recognition, feature extraction, peak detection and other 

applications, providing a robust theoretical foundation for digital signal processing. 
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1. Introduction 

The general analytical approach in digital signal processing is grounded in functional 

theory, integrating mathematical tools such as linear algebra, differential equations, and 

integral transforms to explore the intrinsic properties of signals. While this methodology 

is widely regarded for its rigorous mathematical logic and clear physical concepts, and is 

recognized as an excellent analytical framework [1-2], it is often limited by its inability to 

offer a comprehensive generalization. Various transformations remain disconnected, 

highlighting the approach's inherent constraints. Consequently, alternative methods are 

necessary to facilitate a more in-depth investigation of signal behavior. 

Functional analysis, as a cornerstone of modern mathematical analysis, not only en-

hances our understanding of the intrinsic structure of functions and function spaces but 

also bridges the gap between abstract mathematical theory and practical scientific appli-

cations. By extending the concept of vector spaces to infinite dimensions—namely, func-

tion spaces—functional analysis investigates the interactions of functions as elements 

within these spaces and their behavior under specific operations. This encompasses pro-

found concepts such as the rigorous metrics of metric spaces, the distance and complete-

ness in normed spaces, the symmetry and positive definiteness in inner product spaces, 

and the completeness and orthogonality in Hilbert spaces. Although the highly abstract 

nature of functional analysis may appear distant from real-world problems, it plays a piv-

otal role in various fields, including calculus solving, quantum mechanics analysis, statis-

tical inference, and signal processing. 

In the field of signal processing, traditional signals are no longer mere time sequences 

or numerical arrays, but are redefined as deeper mathematical entities—vectors in infi-

nite-dimensional function spaces. This shift in perspective has not only simplified the de-

scription and analysis of signal characteristics but has also reduced the complexity of the 

problem. Signal processing systems, in turn, are no longer confined to a set of algorithms 

or hardware implementations. Instead, they are abstracted as linear operators or, more 
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broadly, transformations acting on the signal space, capable of capturing and transform-

ing the essential features of signals, whether for tasks such as filtering, compression, or 

pattern recognition. The integration of theory and practice goes beyond theoretical deri-

vation and demonstrates significant potential and value in real-world applications of dig-

ital signal processing. For instance, in communication system design, functional analysis 

methods enable more precise filter design to eliminate noise while preserving signal in-

tegrity; in image processing, it facilitates the development of efficient image compression 

algorithms that reduce data storage and transmission burdens without loss of quality; and 

in speech recognition and natural language processing, the principles of functional anal-

ysis underpin the extraction of key speech signal features, enhancing intelligent interac-

tion experiences. This paper aims to elucidate the applications of functional analysis in 

the field of digital signal processing by integrating its fundamental theory with relevant 

knowledge in the domain.  

 

2. Fundamental Theory 

2.1. Functional Sets and Signal Spaces 

In functional analysis, the definition of a set refers to the collection of entities that 

possess specific properties or satisfy certain conditions, with each entity being termed an 

element of the set [3-5]. In signal processing, each group of discrete signals can be repre-

sented by a set, which we refer to as the signal space. For example, the set of periodic sine 

signals can be expressed as: 

                  (1) 

The 𝑅𝑛 space, or n-dimensional real space, is formed by discrete-time sequences con-

sisting of n sample points. The 𝐶(𝑇) space, or continuous-time space, is composed of 

continuous-time signals. The 𝐿2(𝑇) space, or square-integrable space, consists of signals 

with finite energy. 

The n-dimensional real space is constructed from discrete-time sequences, while the 

continuous-time space or square-integrable space can be formed from continuous-time 

signals. 

2.2. Extremum Problems in Signal Processing 

Extremum problems are frequently encountered in signal processing. In signals, local 

maxima and minima often represent critical information. For instance, in speech recogni-

tion, a local maximum can correspond to the stress or emphasis in speech, while a local 

minimum may indicate the boundaries of the speech. In image processing, extrema high-

light essential features such as object contours and edges. Therefore, accurately identify-

ing the extrema within a signal becomes a fundamental task. The common approach to 

solving this problem involves differentiation to locate the points where the derivative of 

the function is either zero or undefined. These points are then analyzed using the second 

derivative test to classify them as maxima or minima. 

Extremum problems pertain to the optimization of signals and systems, aiming to 

either maximize or minimize a specific functional or quadratic functional of the signal or 

system. 

In a normed linear space, the directional derivative of functional 𝑓(𝑥̅) refers to the 

change in 𝑥0, the directional derivative of 𝑓(𝑥̅) exists and equals zero in every direction, 

i.e., , then this point is called a fixed point or an extremum point. This indicates 

that the value of the functional remains nearly invariant in the neighborhood of this point 

and is not affected by small perturbations. Such points hold significant importance in 

functional analysis and often serve as key points for optimization problems and stability 

analyses. 
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It can be demonstrated that the inner product can represent the directional deriva-

tives of both linear functionals and quadratic functionals. That is, 

                               
(2) 

 
                         

(3) 

where denotes the adjoint operator of 𝐴. 

It is also proven that, in a real space, the inner product of the gradients (denoted as 

and of a linear functional and a quadratic functional can represent the directional 

derivatives of the two functionals, i.e., 

and                  (4) 

From the above equation, we deduce that: 

                and                     (5) 

Therefore, the existence of a fixed point for the linear or quadratic functional of a 

signal constitutes a necessary condition for the signal to have an extremum, i.e.,  

or . In practical applications, the extremum problem of a signal may also be subject 

to an additional constraint, such as =constant}. This is equivalent to seeking a fixed 

point within the subset satisfying this constraint, that is, finding the fixed point of 

. Thus, we have 

                       (6) 

where λ is a constant, and the above equation can be represented in gradient form as: 

                                         (7) 

solving the above equation yields the desired signal. 

3. Application Examples 

3.1 Fourier Transform 

The Fourier transform is a linear integral transform that converts complex time-do-

main signals into frequency-domain representations, known as the signal's spectrum [6]. 

By processing the signal in the frequency domain, its features and structure can be ana-

lyzed more efficiently. The inverse Fourier transform, on the other hand, allows the pro-

cessed frequency-domain signal to be converted back into a time-domain signal for fur-

ther analysis or application. After processing in the frequency domain, the Fourier inverse 

transform can be used to revert these frequency-domain signals to their original time-do-

main form. The widespread application of Fourier transforms lies in the analysis and pro-

cessing of various types of signals, such as audio and images. Frequency-domain analysis, 

by providing information on the signal's frequency components, helps to understand the 

signal's periodicity, frequency characteristics, and filtering operations. Additionally, by 

using the inverse Fourier transform, signals processed in the frequency domain can be 

reverted to their original time-domain form for further processing and application. 

𝐹(𝑗𝜔) ≝ ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞
                        (8) 

𝑓(𝑡) ≝
1

2𝜋
∫ 𝑓(𝑡)𝑒𝑗𝜔𝑡𝑑𝜔

∞

−∞
                        (9) 

A fundamental prerequisite for the existence of the Fourier transform of a given real-

valued function f(t) is that the function must be integrable over the entire time axis. 

                           (10) 

The Discrete Fourier Transform (DFT), as a commonly used foundational tool in sig-

nal analysis and processing, experiences a quadratic increase in computational complexity 

with the length of the sequence. This presents a significant computational barrier in large-

scale data processing scenarios. To address this, the concept of the Fast Fourier Transform 
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(FFT) was introduced, aiming to dramatically reduce the computational burden of the 

DFT and enable high-speed processing of signal spectrum analysis. The core innovation 

of the FFT algorithm lies in its clever use of the fact that a signal sequence of length N can 

be recursively divided into several shorter subsequences, each of which undergoes DFT 

computation independently. The essence of this process is rooted in exploiting the peri-

odic repetition and symmetry properties of the complex exponential terms in the DFT 

formula. Specifically, the FFT divides the original sequence into two halves, recursively 

converting the large problem into smaller ones until it reaches the basic units. Then, by 

combining and reassembling the DFT results of these basic units in a specific manner, the 

entire sequence's DFT is efficiently restored. This approach not only reduces the number 

of multiplication operations required but also transforms many computations into simple 

addition and subtraction, greatly enhancing the computational efficiency and practicality 

of the algorithm. 

Let the signal model be: 

           (11) 

From 𝐹𝑛 = (𝑛 − 1) ∗ 𝐹𝑠/𝑁, it is evident that the spacing between any two points is 0.5 

Hz. This simulation is divided into three signal frequency bands: 0 Hz, 15 Hz, and 40 Hz. 

Figure 1 shows the Matlab simulation results, where (a) represents the original signal 

waveform, and (b) displays the amplitude spectrum and phase spectrum after the Fourier 

transform. 

   
(a)                              (b) 

Figure 1. Fourier Transform Simulation Results 

3.1 Fourier Transform 

The Hilbert transform [7] is defined as follows: 

         （12） 

Given a continuous-time signal f(t) , its analytic signal is defined as: 

                         （13） 

The Fourier transform of the analytic signal is: 

                             （14） 

From the Fourier transform, we observe that an even-symmetric real signal exhibits 

the phenomenon of frequency conjugation. That is, in the frequency spectrum, we observe 

components of a two-sided spectrum, where the positive frequency part has physical sig-

nificance, while the negative frequency part does not. Therefore, in signal analysis, we 

discard the negative frequency component. However, negative frequencies do carry en-

ergy, so we need to transfer this energy to the positive frequency part. The Hilbert trans-

form achieves this by converting the signal into an analytic signal, which is a complex 

signal, and then applying the Fourier transform to obtain the one-sided frequency spec-

trum. 

Figure 2 presents the simulation results of the Hilbert transform. In Figure 2(a), the 

blue waveform represents the original signal, the orange waveform denotes the real part 

of the signal after Hilbert transform, and the yellow waveform stands for the imaginary 

5 7cos(2 15 30 /180) 3cos(2 40 90 /180)x t t   = +  − +  −

1 ( )
( ) { } ( )* ( ) ( ) ( )

s
s t H s h t s t s h t d d

t


   

 

 

− −
= = = − =

− 

( ) ( ) ( )z t f t j f t= +

2 ( ) 0
( )

0 0

F j
Z j

 





= 





International Journal of Advanced Computing and Technology, Vol. 1, No. 1, 2025 5 of 6 
 

 

part of the Hilbert-transformed signal. Figure 2(b) shows a locally enlarged comparison, 

from which it can be observed that the real part of the signal after Hilbert transform is 

exactly the original signal, while the imaginary part corresponds to the analytic signal—

this imaginary part exhibits a phase shift relative to the real part. As illustrated in Figure 

2(c), the signal after Hilbert transform exhibits a 90° phase shift effect. Figure 2(d) is the 

single-sided spectrum generated by the Hilbert transform: the orange waveform repre-

sents the Fourier transform, and the blue waveform represents the Hilbert transform. It 

can be seen that the Hilbert transform supplements the negative frequency components 

in the Fourier transform to the positive frequency range without causing energy loss. 

 
Figure 2. Hilbert Transform Simulation Results 

3.3 LMS Adaptive Filtering 

The LMS (Least Mean Squares) algorithm is an adaptive filtering technique based on the Wie-

ner filtering principle, optimized through the method of steepest descent to minimize the mean 

square error between the filter output and the desired value. Especially in the absence of prior sta-

tistical knowledge of the input process, the LMS algorithm relies on observed data to continuously 

adjust the filter's parameters, learning during the adjustment process to gradually achieve the opti-

mal filtering result. Therefore, the LMS algorithm is well-suited for processing non-stationary ran-

dom signals. 

Specifically, the LMS algorithm consists of three steps: First, the step size factor  and the 

number of filter taps 𝑀 are determined, and the parameters are initialized. Next, the LMS filter 

output is computed using the steepest descent method: 

                           （15） 

where 𝑦(𝑛) represents the LMS filtered signal, and 𝑥(𝑛) represents the input signal at time 

𝑛 . The mean square error 𝑒(𝑛) is then obtained based on the difference between the observed data 

and the desired value 𝑑(𝑛): 

                         （16） 

The LMS algorithm updates the weight coefficients iteratively using the recursive 

formula: 

                （17） 

where 𝜇 represents the step size factor of the LMS algorithm, which determines the 

stability and convergence rate of the system. Finally, the weight coefficients are updated 

iteratively using the LMS recursive formula to gradually stabilize the system and achieve 

the optimal filtering result. Figure 3 shows the simulation results of the LMS algorithm. 

 
Figure 3. The simulation results of the LMS algorithm 
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4. Conclusions 

The combination of functional analysis and digital signal processing has resulted in 

a more refined signal analysis method, making the signal analysis process simpler and 

significantly optimizing the algorithmic analysis process for digital signal processing. This 

method has broad applications in future signal analysis. 
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