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1. Introduction 

Agricultural ecosystems are coupled socio ecological systems in which biological 

processes and human decisions interact across spatial and temporal scales [21]. Agent 

based modeling (ABM) has emerged as a powerful approach for representing heteroge-

neous actors such as pests, pollinators, plants, and farmers and their interactions [1], 

thereby linking micro level behaviors to emergent, system level dynamics [2]. 

 Relative to statistical or machine learning approaches, ABM offers mechanistic in-

terpretability and natural support for “what if” experimental exploration [22]. In recent 

years, agricultural ABMs have matured from conceptual prototypes into decision support 

tools, increasingly reported under standard protocols (e.g., ODD) to enhance transpar-

ency and reproducibility [23].  

Building on this progress, the present concise review synthesizes key ABM applica-

tions in agriculture, with emphasis on i) pest and disease spread, ii) pollination dynamics, 

iii) vegetation succession, iv) nutrient cycling, and v) farmer decision making. Across 

these domains, common modeling patterns include spatially explicit landscapes, 

multi‑component sub‑models, and scenario analysis that connects process understanding 

with management insights. 

2. Pest and Disease Spread Modeling 

ABM is well-suited to capture the complexity of pest and disease dynamics in agroe-

cosystems, which often involve both biological processes and human management. Com-

pared to statistical learning and machine learning methods, ABM offers better interpreta-

bility and visualization capabilities. 

In 2011, Rebaudo et al. developed an ABM to simulate the spread of an invasive po-

tato pest in Ecuador by combining an ecological sub-model of pest population growth 

with a social sub-model of farmer behavior [3]. This integrated model allowed examina-

tion of how farmers’ movements and pest control knowledge influence the regional inva‑

sion speed, as shown in Figure 1. The results showed that farmers’ long-distance transport 
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of infested plant material significantly affects pest spread, underscoring the importance 

of human behavior in epidemiology. 

 

Figure 1. Schematic representation of the model structure 

 

In 2012, Atallah et al. developed a spatially explicit ABM of grapevine leafroll disease 

that integrates a cellular automaton to represent within-row and across-row transmission 

[13]. By modeling heterogeneous vines with age-dependent latency and infection stages, 

the study tested alternative roguing-and-replanting rules, as shown in Figure 2. This work 

illustrates how ABMs can link epidemiological dynamics with economic outcomes to 

identify cost-effective disease control strategies. 

 

Figure 2. Realizations of the spatial disease diffusion 

 

In 2015, Rebaudo et al. developed an agent-based model to investigate how climatic 

and economic variability shape farmers’ adaptive management in pest control [15], as 

shown in Figure 3. Using field data from the Ecuadorian Andes, they simulated heteroge-

neous farmers managing the invasive potato tuber moth under scenarios of fluctuating 

temperature and crop prices. The model incorporated a landscape, pest, economic, and 

human submodel, with farmer behaviors parameterized by observed typologies ranging 

from risk-averse to experimenters.  
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Figure 3. The underlying model is composed of a network of interacting farmers who are ca-

pable of learning and adapting to circumstances. 

 

In 2020, Bernoff et al. developed a dual framework combining an ABM with partial 

differential equations to explain the characteristic “dense front with exponentially decay‑

ing tail” observed in hopper bands of the Australian plague locust [14]. Their models as-

sume that individual transitions between moving and stationary states depend on local 

vegetation resources, with stationary locusts feeding and thereby depleting resources, as 

shown in Figure 4.  

 

Figure 4. Schematic of a traveling pulse of locusts 

3. Pollination Dynamics Modeling 

Pollination services in agriculture involve complex interactions between plants, pol-

linators, and the environment, making them well suited for agent-based modeling. ABMs 

have been used to explore various facets of pollination [4], including pollinator foraging 

behavior, plant-pollinator spatial arrangement, and environmental effects on pollination 

success. 

In 2018, Everaars et al. [12] developed SOLBEE, an individual-based, spatially explicit 

model of solitary bees operating on a 1-km² grid landscape, as shown in Figure 5. The 

model links body size allometrically to foraging traits and simulates a five-stage foraging 

cycle (forage, move, explore, return, unload). Across 12,000 simulations, results showed 

that traits dominated: body size largely determined flower-visit rates, while nesting pref-

erence governed landscape coverage and foraging distance. Importantly, a simple 
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proxy—the ratio of nest to foraging habitat—outperformed fragmentation in predicting 

fitness and pollination outcomes, with visitation saturating near 0.2.  

 

Figure 5. Conceptual diagram, illustrating how landscape grid cells with flowers are used. 

 

In 2018, Qu et al. developed an ABM [4] for wild blueberry fields composed of genet-

ically distinct clones pollinated by diverse insects. The model included honeybees, bum-

ble bees, and solitary bees with species-specific foraging traits to assess how pollinator 

composition and behavior influence fruit set, as shown in Figure 6. Because blueberries 

are largely self-sterile, the simulation emphasized cross-clone visits across a heterogene-

ous landscape. By varying clone patch size, pollinator densities, and weather, the authors 

showed how ABM can reveal optimal species mixes and field arrangements to maximize 

yield—insights difficult to obtain from field trials alone. 

 

Figure 6. Conceptual model of wild blueberry cross-pollination composed of key ecological 

processes 

 

In 2023, Cao et al. developed a spatially explicit Strawberry Pollination Simulation 

Model (SPSM) on the GAMA platform, representing honeybees as foraging agents and 

each strawberry flower as a receptive entity in a bounded greenhouse layout. This paper 

[5] used SPSM to test bee density and hive distribution, tracking every bee, flower, pollen 

grain, and fruit, as shown in Figure 7. Results showed a saturation beyond ~1 bee per 

plant, and that more even hive placement improves fruit quality and overall pollination 

efficiency. Continuous bee activity also mitigates stigma receptivity constraints, helping 

explain why bee pollination outperforms manual pollination.  
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Figure 7. Entities and their interactions for strawberry pollination 

 

Building on the same SPSM framework, Cao et al.  [6,7] extended the model with a 

state machine representation of bee flight and multiple cultivars, to evaluate field design 

(i.e.interplanting) and staggered planting strategies in 2024, as shown in Figure 8. Simu-

lations favored alternating rows of different cultivars within the same bed to enhance 

cross-pollination, and suggested staggering planting by ~5 days to reduce peak bloom 

competition for bee visits and increase average berry weight. 

 
Figure 8. A typical honeybee flight trajectory in the simulation 

4. Vegetation Succession Modeling 

Beyond specific interactions like pest outbreaks or pollination, ABMs have been ap-

plied to longer-term vegetation dynamics and succession in agricultural landscapes. By 

integrating plant growth processes into agent rules, these models can simulate how plant 

communities change over time under various scenarios, thereby providing a basis for de-

cision-making for growers or government. 

 In 2017, Spies et al. developed an agent-based landscape model [8] based on Envision 

for a fire-prone region in Oregon that incorporated an existing forest succession model 

alongside agents representing landowners, , as shown in Figure 9. In this coupled human-

natural system model, the vegetative agents grew and transitioned through successional 

stages while landowner agents made decisions about fuel treatments and timber harvest. 

The ABM was used to compare alternative management scenarios over a 50-year period, 

revealing how different policies influence forest structure, wildfire outcomes, and ecosys-

tem service metrics.  
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Figure 9. Conceptual model of components and interactions of the Envision model 

 

In 2023, Von Essen et al. [16]  introduced ABSOLUG, an abstract agent-based model 

of tropical commodity frontiers that integrates governments, NGOs, smallholders, and 

largeholders to assess multi-stakeholder governance, as shown in Figure 10. The model 

simulates land-use, business, and political processes—linking profits, reputational risks, 

and lobbying–campaigning dynamics—to evaluate scenarios ranging from hands-off pol-

icies to proactive conservation. Results reproduced three common forest trajectories: near-

total deforestation, low-level stagnation, and forest transition, with sensitivity analyses 

highlighting largeholder action cadence and production costs as key drivers. 
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Figure 10. Five agent groups engage in processes across three process columns 

 

Arnejo et al. [17] developed a spatially explicit ABM of a lowland dipterocarp forest 

in the Philippines to evaluate selective logging (SL) with and without assisted natural re-

generation (ANR), , as shown in Figure 11. Simulations over 500 years showed that SL 

alone caused steady forest decline, while coupling SL with ANR maintained ~80% forest 

cover and produced more stable profits in later centuries. This case highlights how ABMs 

can link ecological regeneration processes with economic outcomes, offering a virtual la-

boratory for policy testing in resource management.  

 
Figure 11. Simualtion forest results in this ABM 

 

In summary, ABMs allow researchers to conduct “what-if” experiments on vegeta‑

tion succession, a capability absent in traditional statistical learning and machine learning 

methods. By explicitly simulating the gradual, spatially regrowth of plant communities in 

tandem with management actions. 
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5. Nutrient Cycling Modeling 

ABMs have also been used to investigate nutrient cycling and other ecosystem ser-

vices in agricultural systems. Nutrient flows such as nitrogen involve interactions among 

soil organisms, crops, livestock, and farmers, which ABM can capture at multiple organi-

zational levels.  

In 2018, Grillot et al. provided TERROIR model, which analyzed nutrient cycling in 

West African agro-silvo-pastoral systems during historical agrarian transitions [9]. In 

TERROIR, agents were defined at three levels: plot, household, and landscape, to repre-

sent how farmers manage fields and livestock, and how those decisions scale up to affect 

nutrient redistribution, , as shown in Figure 12. The ABM can simulate several decades of 

agricultural intensification and tracked consequences for nitrogen cycling, soil fertility, 

and resource use efficiency. This model shows how ABMs can serve as “virtual laborato‑

ries” to examine ecosystem functions: by adjusting agents’ behaviors or external drivers, 

one can explore scenarios of nutrient management, closure of nutrient loops, or the impact 

of interventions like fertilizer subsidies on system-wide nutrient balances.  

 

Figure 12. Model structure: from input parameters to output indicators at the three levels of 

organization 

 

In 2020, Fernandez-Mena et al. developed the Flows in Agro-food Networks (FAN) 

model [19], an agent-based framework designed to simulate exchanges of fertilizers, feed, 

food, and wastes among farms and their partners in local agricultural systems, as shown 

in Figure 13. Using the Ribéracois district in France as a case study, FAN explored how 

distance, willingness to exchange, and material preferences influence nutrient recycling, 

bioenergy production, and greenhouse gas emissions. By integrating multiple agent types 

and diverse biomass flows, the model highlights opportunities for circular economy strat-

egies and offers a comprehensive tool to evaluate trade-offs between food production and 

environmental sustainability. 
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Figure 13. Conceptual framework of the nutrient and biomass flows involved in FAN’s agro-

food network. 

 

In 2025, Bradley et al. [20] developed a spatially explicit ABM that integrates Ecolog-

ical Stoichiometry Theory, Dynamic Energy Budget theory, and Nutritional Geometry to 

examine how stoichiometric imbalances scale from individuals to ecosystems, as shown 

in Figure 14. Using snowshoe hares in nitrogen-limited boreal forests as a case study, the 

model tracks dual carbon- and nitrogen-rich reserves, feeding strategies, and nutrient re-

cycling. Results showed that selective feeding nearly doubled adult abundance relative to 

random feeding and reshaped nutrient cycling by amplifying or redistributing spatial het-

erogeneity, demonstrating how individual nutritional mismatches can drive emergent 

population and ecosystem dynamics. 

 

Figure 14. A nitrogen cycle involving plant and consumer interactions 

 

This application of ABMs contributes to understanding ecosystem services in agri-

culture. By representing the distributed decisions and feedbacks underlying services like 

nutrient cycling, these models help identify key points for more sustainable agroecosys-

tem management. 

6. Farmer Decision-Making Modeling 

One of the greatest strengths of ABMs in agriculture is its ability to represent indi-

vidual farmer decision-making and its aggregate effects. Farming communities are often 

heterogeneous, with each farmer having unique resources, preferences, and strategies 

[10]. ABM enables the modeling of each farmer as an autonomous decision-making agent, 

which is crucial for studying policy impact in agricultural systems.  
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In 2018, Hailegiorgis et al. developed OMOLAND-CA [18], an agent-based model of 

rural households in Ethiopia, to explore adaptation under climate variability, as shown in 

Figure 15. The model uniquely incorporates socio-cognitive decision processes, allowing 

households to combine farming and herding strategies while responding to rainfall onset 

and amount. Simulation experiments across baseline, rare droughts, consecutive 

droughts, and erratic climate scenarios showed that mixed livelihood strategies enhance 

resilience, but successive extreme events severely erode assets and drive migration.  

 

Figure 15. High-level architecture of the OMOLAND-CA model 

 

In 2022, Musayev et al. coupled an ABM of smallholder farmers in Ethiopia with a 

crop productivity model to assess the impact of adopting seasonal weather forecasts on 

maize yields [11]. In their model, each farmer agent made planting and management de-

cisions based on whether they received and trusted climate forecast information, with so-

cial interactions influencing the spread of forecast usage, as shown in Figure 16. The out-

puts showed that when a majority of farmers used weather forecasts to time their plant-

ing, community-wide maize yields increased by 17–30% under drought or excess-rainfall 

conditions, as compared to scenarios with no forecast adoption.  

 

Figure 16. Description of agents’ communication about weather forecast information in the 

community 
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7. Future Outlook 

Looking ahead, ABM in agricultural systems is poised to become more data-rich, 

computationally efficient, and decision-oriented. Building on the applications reviewed 

in this paper, we highlight three research directions with high potential impact in the fu-

ture. 

1) Hybrid ABM–AI model. By combining agent-based models with AI, it becomes 

possible to make simulations smarter. Machine learning can help discover rules of behav-

ior directly from data. In addition, reinforcement learning can be used to test how agents 

adapt under different management strategies [24]. These hybrid approaches can speed up 

large simulation runs while still keeping the underlying ABM structure interpretable. 

2) Digital twins. Coupling ABMs with real-time data streams from IoT devices can 

yield operational digital twins for farms, greenhouses [25,27], and regions. These systems 

would continuously update model states, provide short-term forecasts, and quantify un-

certainty, thereby supporting time-critical decisions such as pest control, irrigation sched-

uling.  

3) Multi model coupling. Integrating ABMs with ordinary process based crop, hy-

drological, and epidemiological models etc. can bridge organismal behavior with bio-

physical fluxes and constraints [26]. Morevoer, consistent coupling across spatial and tem-

poral scales enables richer scenario analyses, reduces structural bias through cross model 

validation, and facilitates evaluation of management portfolios. 

 

8. Conclusions 

In conclusion, ABMs provide a unifying analysis framework for agriculture, linking 

heterogeneous agents and local interactions to emergent outcomes that matter for produc-

tivity, sustainability, and livelihoods. The paper demonstrates that ABM can illuminate 

mechanisms of pest and disease spread, explain pollination and vegetation dynamics, 

trace nutrient flows, and quantify the aggregate implications of diverse farmer decisions. 

By enabling transparent “what‑if” experiments, ABM complements field trials and aggre-

gate models, often revealing nonlinear responses and unintended consequences. 

As data volumes, computing capabilities, and methodological standards continue to 

advance, agricultural ABMs are likely to evolve into calibrated, interoperable, and scala-

ble platforms that support real‑time decision‑making and policy design. However, realiz-

ing this potential will require rigorous validation and sustained collaboration across eco-

logical, agronomic, computational expertise to ensure that ABMs remain both credible 

and practical. 
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